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Stochastic resonance in neural systems: Effect of temporal correlation in the spike trains

G. Mato
Comisión Nacional de Energı´a Atómica, Centro Ato´mico Bariloche, 8400 San Carlos de Bariloche,

Rio Negro, Argentina
~Received 20 February 1998!

We consider here the effect of temporal correlations on the transmission of spike trains in an integrate-and-
fire neuron. We find that if the noisy input spike train is variable enough, the signal-to-noise ratio can display
more than one peak as a function of the noise strength. This result is analyzed in terms of a simple probabilistic
description of the problem.@S1063-651X~98!08407-4#

PACS number~s!: 87.10.1e, 05.40.1j, 02.50.Fz
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I. INTRODUCTION

Stochastic resonance~SR! is a nonlinear effect in which
noise can enhance the detection of weak signals. It was o
nally proposed to explain the recurrences of Earth’s ice a
@1,2#, and later applied to a variety of systems such as e
tronic circuits, lasers, superconducting devices, and neu
@3,4#.

The concept was first applied to bistable systems. A w
signal could be too small to induce a transition from o
minimum to the other, but adding noise will allow the syste
to overcome the barrier. If the level of noise is too high t
state of the system will become uncorrelated to the sig
Therefore one can expect the existence of a value of
noise that optimizes the detection of signals.

The phenomenon has also been found in different kind
systems, such as single potential wells@5# and integrate-and
fire ~IF! dynamics@6#. The latter is a common model fo
neural dynamics. It consists of a linear differential equat
for the subthreshold dynamics and a resetting of the m
brane potential when it reaches a given threshold value@7#.
The output of the system is, in this case, a ‘‘pulse’’ each ti
the membrane potential of the neuron crosses the thresh

The noise-enhanced transmission of spike trains in
neurons has been investigated in@8#. In this work the signal
is taken as a series of periodic spike trains, while the no
consists of random spike trains. The latter ones are assu
to be independent Poisson processes. The strength o
noise is controlled by changing the number of random sp
trains ~that is equivalent to changing the mean value of
Poisson process!, while the size of the postsynaptic potenti
generated by each spike is kept constant. Let us note tha
does not affect the mean value of the noise only, but also
variance. In fact, in the limit of an infinite number of nois
spike trains, the ratio between the variance and the m
value of the intervals goes to zero. Another possibility is
keep the number of noisy inputs in a given time interv
constant and change the size of the postsynaptic pote
generated by each individual spike. In this way we can
crease the mean value of the noisy input without decrea
the relative variance of the interspike intervals.

An interesting point that is not usually addressed in
context of neural dynamics is the influence of temporal c
relations in the spike trains. Noisy spike trains are usua
assumed to be Poissonian, as in@8#. However, experimenta
measurements of activity do not agree with this assumpt
PRE 581063-651X/98/58~1!/876~5!/$15.00
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For instance, in@9#, it is found that the ratio between th
variance of the number of spikes observed in a given inte
and the mean value of the number of spikes is 1.9, while
a Poissonian distribution it should be 1. Even higher rat
have also been observed@10,11#. This non-Poissonian behav
ior indicates that there must be correlations in the timing
the spikes, i.e., the probability of having a spike in a giv
time interval is a function of the timing of the previou
spikes.

In this work we address the question of the influence
temporal correlations in the timing of the spikes on SR.
do this we will simulate an IF neuron that receives as inp
two spike trains: one is periodic and the other is noisy wit
distribution of interspike intervals having a given variabilit
The plan of the paper is as follows. In Sec. II we introdu
the model for the neuron and for the generation of the no
spike trains. In Sec. III we describe the results of the sim
lations. In Sec. IV we analyze the problem in terms of
simple probabilistic description of the system@12,13#. In
Sec. V we discuss the results and possible extensions.

II. MODEL

The subthreshold dynamics is given by

t
dV

dt
52V~ t !1G~ t !@Vrev2V~ t !#, ~1!

where V(t) is the membrane potential,t is the membrane
time constant,G(t) is the synaptic conductance, andVrev is
the reversal potential of the interaction. IfV(t) reaches the
threshold valueu then it is reset instantly to 0. The output o
the neuron is given by the function

O~ t !5 (
tspikes

d~ t2tspikes!, ~2!

wheretspikesare the times whereV(t) has reached the thres
hold.

The evolution of the synaptic conductance is given by

tG

dG

dt
52G~ t !1E~ t !, ~3!

wheretG is the characteristic decay time of the interacti
andE(t) represent the input spike trains:
876 © 1998 The American Physical Society
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E~ t !5wsignal(
k

d~ t2tk
signal!1wnoise(

k
d~ t2tk

noise!, ~4!

where wsignal and wnoise are the strength of the signal an
noise spike trains andtk

signal andtk
noiseare the times of thekth

spike in each one of the trains.
For the periodic spike train the spike times are given

tk
signal5kT, whereT is the period. For the noisy spike train

tk
noise5tk21

noise1uk ~5!

for k.0 andt1
noise50. The interspike intervalsuk are inde-

pendent random variables with a probability density funct
given by

P~u!5
lmum21e2lu

G~m!
. ~6!

This probability density function has a mean value^u&
5m/l and a variancesu

2[^u2&2^u&25m/l2. Therefore the
coefficient of variability is

cv[
su

^u&
5

1

m1/2
. ~7!

For m51 we recover an exponential distribution of th
interspike intervals and a Poisson distribution for the num
of spikes in a given time interval. Form.1 we have a less
variable process, leading to a periodic spike train in the li
of very largem. For m,1 the process is more variable tha
Poisson. In this case the spikes have a tendency to ‘‘clus
because the distribution of interspike intervals has a div
gence atu50.

III. SIMULATION RESULTS

We solved Eqs.~1! and ~3! numerically using an Eule
discretization scheme with a time step of 0.1 ms~much
smaller than the time constants of the problem!. We choose
t510 ms, tG53 ms, Vrev570 mV above rest, and a
thresholdu520 mV. The strength of the periodic spike tra
is chosen aswsignal56 ms. Let us remark that because of t
form of Eq. ~1!, the synaptic conductance is dimensionle
while wsignal andwnoise have units of time. For this strengt
of the periodic input the neuron will have no output if the
is no noise present.

The noisy spike trains are generated using Eqs.~5! and
~6!. The output functionO(t) is Fourier transformed in orde
to evaluate its power spectrum. The value of the peak at
frequency of the periodic train is identified as the signalS,
and the background value is the noiseN. The signal-to-noise
ratio is defined by

R510 log10

S

N
. ~8!

In Figs. 1~a!–1~e! we show the results for the signal-to
noise ratio as a function of the noise strengthwnoise for dif-
ferent values ofm: 3, 2, 1, 0.5 and 0.25. The most interesti
feature of these results is the appearance of a double pe
the signal-to-noise ratio for small values ofm. The first peak
y

n

r

it

r’’
r-

s

e
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appears at a value ofwnoise that is approximately 1/2 of the
second peak. This suggests that pairs of spikes arriving
small time window are contributing to the response of t
system. This pairing is more probable for smaller values
m, because for this case the probability density function
the interspike intervals is maximum at 0. In the next sect
we will formulate this argument in a more quantitative form

IV. PROBABILISTIC DESCRIPTION

A simple argument by Gammaitoni@12# can be used to
obtain an estimation of the output signal from the probabi
density function of the noise in a threshold system.

We denote the average firing rate for a constant inpuA
with ^O(A)&. Let us suppose that the signal is not a train
spikes but it is alternating periodically between the valu
A2B andA1B with frequencyv0. The signal, that is, the
power spectrum at frequencyv0, will be proportional to the
square of the difference of theoutput firing rate of theA
2B period@^O(A2B)&# minus theoutputfiring rate of the
A1B period @^O(A1B)&#. If the value ofB is small the
signal will be @13#

S}F ]

]A
^O~A!&G2

. ~9!

For a fixed value of the inputA the average firing rate will be
proportional to the probability that the noise becomes eq
to or larger than the difference between the signal and
threshold. If the probability density function of the noise
P(j), then

^O~A!&}E
u2A

`

P~j!dj. ~10!

Replacing this result in Eq.~9! we find that the signal is
proportional to the square of the probability density functi
of the noise evaluated atu2A.

In this approximation the problem is reduced to evalu
ing the probability density function of the noise from th
distribution of the interspike intervals. The calculation
quite simple in the casetG!t. In this limit each spike in the
noisy train generates a post-synaptic potential with an ex
nential time evolution:

Vnoise~ t !5Vmax(
k

exp@2~ t2tk
noise!/t#Q~ t2tk

noise!,

~11!

where

Vmax5
wnoiseVrev

t
~12!

andQ is the Heaviside function.
The potential at a given time is determined by the timi

of all the spikes previous to this time. However, there will
one predominant contribution coming from the last spike
the train previous to that time. If we take into account t
effect of this spike only, neglecting the contribution of th
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FIG. 1. Signal-to-noise ratio as a function of the noise strengthwnoise for ~a! m53, ~b! m52, ~c! m51, ~d! m50.5, and~e! m50.25.
Squares: simulation results. Triangles: estimation from the probabilistic description.
o er-

-

others, the probability density function of finding a value
the potential betweenVnoise and Vnoise1dV inside an inter-
spike of lengthT would be

P~Vnoise!5
t

TVnoise
, ~13!

where Vnoise is in the range@Vmax,Vmaxe
2T/t#. Averaging

over all the possible interspike intervals~and taking into ac-
f count that it is more probable to find longer interspike int
vals than shorter ones! we obtain

Pwnoise
~Vnoise!5

tl

Vmax

G~m,tl ln@Vmax/Vnoise# !

G~m11!

3Q~Vmax2Vnoise!, ~14!

whereG(a,x)5*x
`e2tta21dt is the incomplete gamma func

tion.
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If we also take into account the previous spikes~with interspike intervalsT1, T2, etc.!, the probability density function of
Vnoise for a given value ofVmax is

Pwnoise
~Vnoise!5K tl

Vmax

G„m,tl ln @Vmax~11e2T1 /t1e2~T11T2!/t1••• !/Vnoise#…

G~m11! L , ~15!

where the bracketŝ•••& denote an average overT1, T2, etc. with the distribution of Eq.~6!.

FIG. 2. Probability density function of the noisePwnoise
(Vnoise) for Vnoise55 as a function ofwnoise, for the same values ofm as in Fig.

1: ~a! m53, ~b! m52, ~c! m51, ~d! m50.5, and~e! m50.25.
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In Figs. 2~a!–2~e! we showPwnoise
(Vnoise) as a function of

wnoise for a fixed value ofVnoise, and several values ofm.
These functions display a peak at the valueVmax5Vnoise.
This corresponds to the contribution of one spike, as sho
in Eq. ~14!. The part of the curve to the left of this pea
corresponds to contributions from the previous spikes. T
contribution becomes more important for smaller values om
because in those cases it is more probable to have s
values of T1, T2, etc. The number of spikes of the mo
important contribution will depend on the value ofm, but
independently of this number an expansion of the incomp
G function leads for this contribution to

Pwnoise
~Vnoise!'~Vmax2Vmax

0 !m, ~16!

whereVmax
0 is the minimum possible value forVmax for the

largest contribution.
In order to estimate the signal-to-noise ratio we now ha

to divide the result of Eq.~15! by the fluctuation of the firing
rate. It is not possible to evaluate this number in the fram
work of the present theory, because Eq.~10! gives us only
the average number of spikes in a given time but not
variance. However, the numerical simulations indicate t
the fluctuations of the firing rate are of the same order as
firing rate itself. The coefficient of variability of theoutput
spike train goes from 0.8 form53 to 1.2 for m50.8 ~the
output spike train is more Poissonian than the input on!.
Neglecting the corrections to Poisson statistics in the ou
spike train, we can replace the fluctuation of the firing r
by the firing rate itself. This quantity can be evaluated us
Eqs.~10! and ~15!.

The estimated values of the signal-to-noise ratio for
different values ofm are shown in Figs. 1~a!–1~e!. We can
see that for small values ofm the signal-to-noise ratio indee
has two peaks. The right-hand-side peak falls on the pea
the signal, and corresponds to an output generated by
noisy spike in the input, while the other peak correspond
the contributions of the accumulation of two or more spik

V. DISCUSSION

In this work we have shown that pulsed noise can lead
interesting new behavior in the framework of stochastic re
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nance, such as the appearance of multiple peaks in
signal-to-noise ratio as a function of the noise streng
These peaks appear even in the case of spikes generated
a Poisson statistics, but the relative sizes of the peaks ca
controlled by changing the correlation of the input spi
train.

The pulsed characteristics of the noise are essentia
obtain this result. Previous works have addressed the q
tion of colored noise, for instance, in@14,15# using exponen-
tially correlated noise or in@16# studying a threshold system
with a band limited 1/f noise. But in these cases the corr
lation does not induce multiple peaks in the signal-to-no
ratio.

A simple probabilistic description of the system is enou
to understand qualitatively the appearance of the peaks,
its dependence on the correlation characteristics of the s
trains. This description is independent of the details of
dynamics of the neuron. Therefore it is very probable that
results are valid even for more complex dynamics, such
conductance based models.

As mentioned in@17# it is important to elucidate the rel
evance of SR for brain function. The precise nature of
neural code is widely debated~see@18# for a review.! If the
precise spike times are relevant, then there is no ‘‘noise’
the system. Every spike carries some information. On
other hand, if the information is conveyed in firing rates
noisy input can help to detect changes of the signal
stochastic resonance can be a way to enhance informa
processing.

We have shown that the variability of the noisy spi
trains~and not only the strength of the interactions! can con-
trol the response of the system. In this sense we are show
that there are additional degrees of freedom that can be
ful to control information processing. In nervous systems
variability is a consequence of the dynamical properties
the network~synaptic time constants, synaptic efficacies,
trinsic properties of the neurons!. One important point to be
studied is the relation between these factors and the varia
ity of the spike trains.
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